If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+13X-450=0
a = 1; b = 13; c = -450;
Δ = b2-4ac
Δ = 132-4·1·(-450)
Δ = 1969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{1969}}{2*1}=\frac{-13-\sqrt{1969}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{1969}}{2*1}=\frac{-13+\sqrt{1969}}{2} $
| 2+7m=66 | | 3m-2*1/4=6 | | (x+3)^3-7=x(x+8)(x+1)-3 | | 4x+4x/10/5x+6000=11/15 | | -2x²+32=0 | | 7x+x=4x+x+1 | | Ix+3I=1 | | 0=-4.9t^2+38.5t+5.6 | | 20x+24=3 | | 36+5x−x2=0 | | 5(x+9)=+77 | | (x+3)(x+7)=21 | | 2.7+2.0(2.1x-3.4)=0.1 | | 9x^2-4x=8 | | 102+44x+26=49 | | 8x+15(x-3)=75 | | 2x−2=3 | | 4x-2/3-x=12 | | 5/x=10/6 | | -3/2w-7/2=1/5w-6 | | (3x^2-12x)=0 | | 1.5x^2+5x-84=0 | | -2/3y-1/2=-2/5 | | 3x-6÷4=4x-8 | | 6x−9=2x+7 | | 4/3+-1/3=x+7 | | X+34x+168=0 | | 1.5x^2-5x-84=0 | | (3(a-2))÷4=4a-8 | | (3(x-2))÷4=4x-8 | | 2x+2x-2=4 | | 2(4x-3)=x=3x-5 |